

SkosProvider_SQLAlchemy

This library offers an implementation of the
skosprovider.providers.VocabularyProvider [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider]
interface that uses a SQLALchemy [http://docs.sqlalchemy.org/] backend. While a
VocabularyProvider [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider] is
a read-only interface, the underlying SQLAlchemy [http://docs.sqlalchemy.org/]
domain model is fully
writeable.

This library is fully integrated into Atramhasis [https://atramhasis.readthedocs.org], an online open source
editor for SKOS vocabularies.

Support

If you have questions regarding Skosprovider_SQLAlchemy, feel free to contact us.
Any bugs you find or feature requests you have, you can add to our
issue tracker [https://github.com/koenedaele/skosprovider_sqlalchemy/issues].
If you’re unsure if something is a bug or intentional, or you just want to have
a chat about this library or SKOS in general, feel free to join the
Atramhasis discussion forum [https://groups.google.com/forum/#!forum/atramhasis].
While these are separate software projects, they are being run by the same
people and they integrate rather tightly.

	Setup
	Installation

	Creating a database

	Upgrading from skosprovider_sqlalchemy 1.x to 2.x

	API Documentation
	Providers module

	Models module

	Utils module

	History
	2.0.1 (2023-03-20)

	2.0.0 (2023-01-19)

	1.0.0 (2021-12-21)

	0.6.0 (2020-07-29)

	0.5.2 (2018-11-13)

	0.5.1 (2016-10-05)

	0.5.0 (2016-08-11)

	0.4.2 (2015-03-02)

	0.4.1 (2014-12-18)

	0.4.0 (2014-10-28)

	0.3.0 (2014-10-17)

	0.2.1 (2014-08-25)

	0.2.0 (2014-05-14)

	0.1.2 (2013-12-06)

	0.1.1 (2013-11-28)

	0.1.0

Indices and tables

	Index

	Module Index

	Search Page

Setup

Installation

Installation of Skosprovider_sqlalchemy is easily done using pip.

$ pip install skosprovider_sqlalchemy

Creating a database

Since Skosprovider_sqlalchemy implements the SkosProvider [http://skosprovider.readthedocs.org] interface with a
relational database as a backend, you first need to create this database. To
do this, please follow the instructions of your database software. If you’re
working with SQLite [http://www.sqlite.org], you don’t need to do anything.

Note

Because Skosprovider_sqlalchemy uses SQLAlchemy [http://docs.sqlalchemy.org/] as an ORM layer, it’s not
tailored to any specific database. The codebase is continuously tested
on both SQLite [http://www.sqlite.org] and PostgreSQL [http://www.postgresql.org]. Other databases are untested by us, but as
long as they are supported by SQLAlchemy [http://docs.sqlalchemy.org/], they should work.

Once your database has been created, you can initialise it with the necessary
database tables that will contain your SKOS vocabularies and concepts.

$ init_skos_db sqlite:///vocabs.db

Let’s have a look at what this script did.

$ sqlite3 vocabs.db
SQLite version 3.7.9 2011-11-01 00:52:41
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .tables
collection_concept conceptscheme_note
concept label
concept_hierarchy_collection labeltype
concept_hierarchy_concept language
concept_label match
concept_note matchtype
concept_related_concept note
conceptscheme notetype
conceptscheme_label visitation

Upgrading from skosprovider_sqlalchemy 1.x to 2.x

A change in the models has been made which requires a database upgrade.
The “concept” table’s “concept_id” column has changed from being an int to a string.

Existing databases will therefor require a small change to update table scheme.
Typically this will look like:

ALTER TABLE concept ALTER COLUMN concept_id TEXT NOT NULL;

API Documentation

Providers module

	
class skosprovider_sqlalchemy.providers.SQLAlchemyProvider(metadata, session, **kwargs)

	A skosprovider.providers.VocabularyProvider [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider] that uses SQLAlchemy
as backend.

	
expand(concept_id)

	Expand a concept or collection to all it’s narrower
concepts.

This method should recurse and also return narrower concepts
of narrower concepts.

If the id passed belongs to a skosprovider.skos.Concept [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept],
the id of the concept itself should be include in the return value.

If the id passed belongs to a skosprovider.skos.Collection [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Collection],
the id of the collection itself must not be present in the return value
In this case the return value includes all the member concepts and
their narrower concepts.

	Parameters

	id – A concept or collection id.

	Return type

	A list of id’s or False if the concept or collection doesn’t
exist.

	
expand_strategy = 'recurse'

	Determines how the expand method will operate. Options are:

	recurse: Determine all narrower concepts by recursivly querying the
database. Can take a long time for concepts that are at the top of a
large hierarchy.

	visit: Query the database’s
Visitation table.
This table contains a nested set representation of each conceptscheme.
Actually creating the data in this table needs to be scheduled.

	
find(query, **kwargs)

	Find concepts that match a certain query.

Currently query is expected to be a dict, so that complex queries can
be passed. You can use this dict to search for concepts or collections
with a certain label, with a certain type and for concepts that belong
to a certain collection.

Find anything that has a label of church.
provider.find({'label': 'church'})

Find all concepts that are a part of collection 5.
provider.find({'type': 'concept', 'collection': {'id': 5})

Find all concepts, collections or children of these
that belong to collection 5.
provider.find({'collection': {'id': 5, 'depth': 'all'})

Find anything that has a label of church.
Preferentially display a label in Dutch.
provider.find({'label': 'church'}, language='nl')

Find anything that has a match with an external concept
Preferentially display a label in Dutch.
provider.find({
 'matches': {
 'uri': 'http://id.python.org/different/types/of/trees/nr/1/the/larch'
 }}, language='nl')

Find anything that has a label of lariks with a close match to an external concept
Preferentially display a label in Dutch.
provider.find({
 'label': 'lariks',
 'matches': {
 'type': 'close',
 'uri': 'http://id.python.org/different/types/of/trees/nr/1/the/larch'
 }}, language='nl')

	Parameters

	
	query – A dict that can be used to express a query. The following
keys are permitted:

	label: Search for something with this label value. An empty label is equal to searching for all concepts.

	type: Limit the search to certain SKOS elements. If not present or None, all is assumed:

	concept: Only return skosprovider.skos.Concept [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept] instances.

	collection: Only return skosprovider.skos.Collection [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Collection] instances.

	all: Return both skosprovider.skos.Concept [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept] and skosprovider.skos.Collection [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Collection] instances.

	collection: Search only for concepts belonging to a certain collection. This argument should be a dict with two keys:

	id: The id of a collection. Required.

	depth: Can be members or all. Optional. If not present, members is assumed, meaning only concepts or collections that are a direct member of the collection should be considered. When set to all, this method should return concepts and collections that are a member of the collection or are a narrower concept of a member of the collection.

	
	matches: Search only for concepts having a match to a certain

	external concept. Since collections can’t have matches, this
automatically excludes collections. The argument with two keys:

	uri: The uri of the concept to match. Required.

	type: The type of match, see matchtypes [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept.matchtypes] for the full list of options.

	language (string) – Optional. If present, it should be a
language-tag [https://skosprovider.readthedocs.io/en/latest/glossary.html#term-language-tag]. This language-tag is passed on to the
underlying providers and used when selecting the label to display
for each concept.

	sort (string) – Optional. If present, it should either be id,
label or sortlabel. The sortlabel option means the providers should
take into account any sortLabel if present, if not it will
fallback to a regular label to sort on.

	sort_order (string) – Optional. What order to sort in: asc or
desc. Defaults to asc

	Returns

	A lst of concepts and collections. Each of these
is a dict with the following keys:

	id: id within the conceptscheme

	uri: URI of the concept or collection

	type: concept or collection

	label: A label to represent the concept or collection. It is determined by looking at the language parameter, the default language of the provider and finally falls back to en.

	
get_all(**kwargs)

	Returns all concepts and collections in this provider.

	Parameters

	
	language (string) – Optional. If present, it should be a
language-tag [https://skosprovider.readthedocs.io/en/latest/glossary.html#term-language-tag]. This language-tag is passed on to the
underlying providers and used when selecting the label to display
for each concept.

	sort (string) – Optional. If present, it should either be id,
label or sortlabel. The sortlabel option means the providers should
take into account any sortLabel if present, if not it will
fallback to a regular label to sort on.

	sort_order (string) – Optional. What order to sort in: asc or
desc. Defaults to asc

	Returns

	A lst of concepts and collections. Each of these is a dict
with the following keys:

	id: id within the conceptscheme

	uri: URI of the concept or collection

	type: concept or collection

	label: A label to represent the concept or collection. It is determined by looking at the language parameter, the default language of the provider and finally falls back to en.

	
get_by_id(concept_id)

	Get all information on a concept or collection, based on id.

Providers should assume that all id’s passed are strings. If a provider
knows that internally it uses numeric identifiers, it’s up to the
provider to do the typecasting. Generally, this should not be done by
changing the id’s themselves (eg. from int to str), but by doing the
id comparisons in a type agnostic way.

Since this method could be used to find both concepts and collections,
it’s assumed that there are no id collisions between concepts and
collections.

	Return type

	skosprovider.skos.Concept [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept] or
skosprovider.skos.Collection [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Collection] or False if the concept or
collection is unknown to the provider.

	
get_by_uri(uri)

	Get all information on a concept or collection, based on a
URI.

This method will only find concepts or collections whose URI is
actually stored in the database. It will not find anything that has
no URI in the database, but does have a matching URI
after generation.

	Return type

	skosprovider.skos.Concept [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept] or
skosprovider.skos.Collection [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Collection] or False if the concept or
collection is unknown to the provider.

	
get_children_display(thing_id, **kwargs)

	Return a list of concepts or collections that should be displayed
under this concept or collection.

	Parameters

	thing_id – A concept or collection id.

	Return type

	A list of concepts and collections. For each an
id is present and a label. The label is determined by looking at
the **kwargs parameter, the default language of the provider
and falls back to en if nothing is present. If the id does not
exist, return False.

	
get_top_concepts(**kwargs)

	Returns all top-level concepts in this provider.

Top-level concepts are concepts that have no broader concepts
themselves. They might have narrower concepts, but this is not
mandatory.

	Parameters

	
	language (string) – Optional. If present, it should be a
language-tag [https://skosprovider.readthedocs.io/en/latest/glossary.html#term-language-tag]. This language-tag is passed on to the
underlying providers and used when selecting the label to display
for each concept.

	sort (string) – Optional. If present, it should either be id,
label or sortlabel. The sortlabel option means the providers should
take into account any sortLabel if present, if not it will
fallback to a regular label to sort on.

	sort_order (string) – Optional. What order to sort in: asc or
desc. Defaults to asc

	Returns

	A lst of concepts, NOT collections. Each of these
is a dict with the following keys:

	id: id within the conceptscheme

	uri: URI of the concept or collection

	type: concept or collection

	label: A label to represent the concept or collection. It is determined by looking at the language parameter, the default language of the provider and finally falls back to en.

	
get_top_display(**kwargs)

	Returns all concepts or collections that form the top-level of a display
hierarchy.

As opposed to the get_top_concepts(), this method can possibly
return both concepts and collections.

	Return type

	Returns a list of concepts and collections. For each an
id is present and a label. The label is determined by looking at
the **kwargs parameter, the default language of the provider
and falls back to en if nothing is present.

Models module

	
class skosprovider_sqlalchemy.models.Collection(**kwargs)

	A collection as know by skos.

	
class skosprovider_sqlalchemy.models.Concept(**kwargs)

	A concept as know by skos.

	
class skosprovider_sqlalchemy.models.ConceptScheme(**kwargs)

	A skos conceptscheme.

	
class skosprovider_sqlalchemy.models.Initialiser(session)

	Initialises a database.

Adds necessary values for labelType, noteType and language to the database.

The list of languages added by default is very small and will probably need
to be expanded for your local needs.

	
init_all()

	Initialise all objects (labeltype, notetype, language).

	
init_labeltype()

	Initialise the labeltypes.

	
init_languages()

	Initialise the languages.

Only adds a small set of languages. Will probably not be sufficient
for most use cases.

	
init_matchtypes()

	Initialise the matchtypes.

	
init_notetype()

	Initialise the notetypes.

	
class skosprovider_sqlalchemy.models.Label(label, labeltype_id='prefLabel', language_id=None)

	A label for a Concept, Collection or
ConceptScheme.

	
class skosprovider_sqlalchemy.models.LabelType(name, description)

	A labelType according to skos.

	
class skosprovider_sqlalchemy.models.Language(id, name)

	A Language.

	
class skosprovider_sqlalchemy.models.Match(**kwargs)

	A match between a Concept in one ConceptScheme and those in
another one.

	
class skosprovider_sqlalchemy.models.MatchType(name, description)

	A matchType according to skos.

	
class skosprovider_sqlalchemy.models.Note(note, notetype_id, language_id, markup=None)

	A note for a Concept, Collection or
ConceptScheme.

	
class skosprovider_sqlalchemy.models.NoteType(name, description)

	A noteType according to skos.

	
class skosprovider_sqlalchemy.models.Source(citation, markup=None)

	The source where a certain piece of information came from.

	
class skosprovider_sqlalchemy.models.Thing(**kwargs)

	Abstract class for both Concept and Collection.

	
class skosprovider_sqlalchemy.models.Visitation(**kwargs)

	Holds several nested sets.

The visitation object and table hold several nested sets. Each
skosprovider_sqlalchemy.models.Visitation holds the positional
information for one conceptplacement in a certain nested set.

Each conceptscheme gets its own separate nested set.

	
skosprovider_sqlalchemy.models.label(labels=[], language='any', sortLabel=False)

	Provide a label for a list of labels.

Deprecated since version 0.5.0: Please use skosprovider.skos.label() [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.label]. Starting with
skosprovider 0.6.0, the function can function on
skosprovider_sqlalchemy.models.Label instances as well.

	Parameters

	
	labels (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of labels.

	language (str [https://docs.python.org/3/library/stdtypes.html#str]) – The language for which a label should preferentially
be returned. This should be a valid IANA language tag.

	sortLabel (boolean) – Should sortLabels be considered or not? If True,
sortLabels will be preferred over prefLabels. Bear in mind that these
are still language dependent. So, it’s possible to have a different
sortLabel per language.

	Return type

	A Label or None if no label could be found.

	
skosprovider_sqlalchemy.models.related_concepts_append_listener(target, value, initiator)

	Listener that ensures related concepts have a bidirectional
relationship.

	
skosprovider_sqlalchemy.models.related_concepts_remove_listener(target, value, initiator)

	Listener to remove a related concept from both ends of the relationship.

Utils module

	
class skosprovider_sqlalchemy.utils.VisitationCalculator(session)

	Generates a nested set for a conceptscheme.

	
visit(conceptscheme)

	Visit a skosprovider_sqlalchemy.models.Conceptscheme and
calculate a nested set representation.

	Parameters

	conceptscheme – A
skosprovider_sqlalchemy.models.Conceptscheme for which
the nested set will be calculated.

	
skosprovider_sqlalchemy.utils.import_provider(provider, conceptscheme, session)

	Import a provider into a SQLAlchemy database.

	Parameters

	
	provider – The skosprovider.providers.VocabularyProvider [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider]
to import. Since the SQLAlchemy backend uses integers as
keys, this backend should have id values that can be cast to int.

	conceptscheme – A
skosprovider_sqlalchemy.models.Conceptscheme to import
the provider into. This should be an empty scheme so that there are
no possible id clashes.

	session – A sqlalchemy.orm.session.Session.

History

2.0.1 (2023-03-20)

	Fixed and issue with import_provider still assuming ids are numeric. (#97)

2.0.0 (2023-01-19)

	Major BC break: Change concept.concept_id from Integer to String to allow
storing concepts and collections with a non-numeric id. Existing instance will
need to update their SQL database. Please consult the docs or the README for
some help in doing so. (#87)

	Skosprovider_sqlalchemy now depends on SQLAlchemy 1.4 or higher and should be
compatible with SQLAlchemy 2. Older versions of SQLAlchemy are no longer
supported. (#90)

	Refactored the Skosprovider_sqlalchemy constructor to call the super constructor. (#95)

	Drop support for Python 3.6 and 3.7. Add support for Python 3.11. (#86)

	Drop pyup support. (#85)

1.0.0 (2021-12-21)

	Drop python 2 support (#80)

	Upgrade requirements (#78)

	Add a CITATION.cff file

0.6.0 (2020-07-29)

	Update to the latest skosprovider version and implement the
infer_concept_relations attribute. (#53)

	Add the ability to query on matches in line with the latest
skosprovider version. (#57)

	Drop the session decorator that was added in 0.4.0 since it did not fix the
issue we wanted it to fix and it added a lot of overhead. A provider should
now be passed a sqlachemy.orm.session.Session at startup, or a
callable that returns such a session. (#64)

	Improved performance of getting the concept_scheme by caching it. (#71)

	Make querying a collection with depth=all possible. Before the provider would
only provide the direct members of a collection. (#76)

	Drop support for Python 3.4 and 3.5. Add support for Python 3.7 and 3.8. This
is also the last version to support Python 2. (#62)

0.5.2 (2018-11-13)

	Update a lot of dependencies.

	Add __str__ implementations to the model classes. (#43)

0.5.1 (2016-10-05)

	Catch linking errors when importing a provider and turn them into log warning.
By linking errors we mean cases where one concept has a relation to a
non-existing other concept. (#25)

	Allow building as wheel.

0.5.0 (2016-08-11)

	Update to skosprovider 0.6.0

	Minor BC break: A skosprovider_sqlalchemy.models.Language that gets
cast to a string, now returns the language’s ID (the IANA language
code),as opposed to the language’s description it would previously return.

	Minor BC break: The URI attribute has been made required for a
skosprovider_sqlalchemy.models.ConceptScheme. Before it was optional,
but it probably would have caused problems with skosprovider anyway.

	Due to the update to skosprovider 0.6.0, a new field markup, was added to a
skosprovider_sqlalchemy.models.Note. When upgrading from a previous
version of skosprovider_sqlalchemy, any databases created in that previous
verions will need to be updated as well. Please add a field called markup
to the note table.

	Inline with the skosprovider 0.6.0 update, a languages attribute was added
to skosprovider_sqlalchemy.models.ConceptScheme. When upgrading from
a previous version of skosprovider_sqlalchemy, any databases created with
that previous verions will need to be updated as well. Please add a table
called conceptscheme_language with fields conceptscheme_id and
language_id. (#18)

	To comply with the skosprovider 0.6.0 update, the sources attribute was
added to skosprovider_sqlalchemy.models.Conceptscheme,
skosprovider_sqlalchemy.models.Concept and skosprovider_sqlalchemy.models.Collection.
When upgrading from a previous version of skosprovider_sqlalchemy, any
databases created with that previous verions will need to be updated as well.
Please add a table source with fields id, citation and markup,
a table concept_source with fields concept_id and source_id and a
table conceptscheme_source with fields conceptscheme_id and source_id.

	All methodes that return a list have been modified in line with skosprovider
0.6.0 to support sorting. Sorting is possible on id, uri, label and
sortlabel. The last two are language dependent. The sortlabel allows
custom sorting of concepts. This can be used to eg. sort concepts representing
chronological periods in chronological in stead of alphabetical order. (#20)

	To comply with the skosprovider 0.6.0 update, the deprecated
skosprovider_sqlalchemy.providers.SQLAlchemyProvider.expand_concept()
was removed.

	When importing a provider, check if the languages that are being used in the
provider are already in our database. If not, validate them and add them to
the database. In the past the entire import would fail if not all languages had
previously been added to the database. (#14)

	When importing a provider, try to import as much information as possible about
the concept_scheme that’s attached to the provider. (#19)

	When querying for indvidual an conceptscheme or concept, use joinedload to
reduce the number of queries needed to collect everything. (#15)

	Deprecated the skosprovider_sqlalchemy.models.label() function. Please
use skosprovider.skos.label() [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.label] from now once, since this function can now
operate on both skosprovider.skos.Label [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Label] and
skosprovider_sqlalchemy.models.Label instances. This was the reason
for the BC break in this release.

0.4.2 (2015-03-02)

	Make README work better on pypi.

	Fix a further problem with the length of language identifiers. Previous fix
in 0.3.0 only fixed the length of the identifiers in the languages table,
but not in the links from the labels and the notes to the language table.
[BartSaelen]

	Added some documentation about setting up a database.

0.4.1 (2014-12-18)

	Fix a bug with the deletion of a Concept not being possible without having
it’s matches deleted first. [BartSaelen]

0.4.0 (2014-10-28)

	Major BC break: A provider is no longer passed a database session, but a
database session maker. This change was needed to get the provider to function
properly in threaded web applications. This will mean changing the
code where you’re creating your provider. In the past, you probably called
a session maker first and then passed the result of this call to the provider.
Now you should just pass the session maker itself and let the provider create
the sessions for you.

	Different way of fetching the ConceptScheme [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.ConceptScheme]
for a provider. No longer fetches a conceptscheme at provider instantiation,
but when needed. Otherwise we end up with a possibly very long cached version
of a conceptscheme.

0.3.0 (2014-10-17)

	Update to skosprovider 0.4.0.

	Add ConceptScheme [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.ConceptScheme] information to a provider so it
can be attached to Concept [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept] objects that are
handled by the provider.

	Let provider handle superordinates and subordinate arrays.

	Let provider add notes to collections.

	Added a Match model to handle
matches. Expand the provider to actually provide information on these matches.

	Expand the field length for language identifiers. IANA suggests that
identifiers up to 35 characters should be permitted. Updated our field length
to 64 to have a bit of an extra buffer.

0.2.1 (2014-08-25)

	Switch to py.test

	Add Coveralls [https://coveralls.io] support for code coverage.

	Add ability to configure the SQLAlchemy URL used for testing. Allows testing
on multiple RDBMS systems.

	Run Travis [https://travis-ci.org] tests for both SQLite and Postgresql.

	Fix a bug in skosprovider_sqlalchemy.utils.import_provider() when
dealing with narrower collections (#8). [cahytinne]

	Make the provider actually generate a URI if there’s none in the
database.

0.2.0 (2014-05-14)

	Compatibility with skosprovider 0.3.0

	Implement skosprovider.providers.VocabularyProvider.get_by_uri() [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider.get_by_uri].

	Implement skosprovider.providers.VocabularyProvider.get_top_concepts() [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider.get_top_concepts].

	Implement skosprovider.providers.VocabularyProvider.get_top_display() [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider.get_top_display]
and skosprovider.providers.VocabularyProvider.get_children_display() [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider.get_children_display].

	Add a UniqueConstraint(conceptscheme_id, concept_id) to Thing. (#3)

	Rename the colletions attribute of skosprovider_sqlalchemy.models.Thing
to member_of. (#7)

0.1.2 (2013-12-06)

	Pinned dependency on skosprovider < 0.3.0

	Pass data to skosprovider.skos.Concept [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept] using keywords in stead of
positions.

0.1.1 (2013-11-28)

	Fixed a bug with collection members being passed instead of their ids.

	Fixed another bug where model ids were used instead of concept ids.

0.1.0

	Initial version

	Implementation of a SKOS domain model in SQLAlchemy.

	Implementation of a skosprovider.providers.VocabularyProvider [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider] that
uses this model.

	Can query a hierarchy recursively or using nested sets.

	Utility function to import a skosprovider.providers.VocabularyProvider [https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider]
in a database.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 skosprovider_sqlalchemy	

 	
 	
 skosprovider_sqlalchemy.models	

 	
 	
 skosprovider_sqlalchemy.providers	

 	
 	
 skosprovider_sqlalchemy.utils	

Index

 C
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | R
 | S
 | T
 | V

C

 	
 	Collection (class in skosprovider_sqlalchemy.models)

 	
 	Concept (class in skosprovider_sqlalchemy.models)

 	ConceptScheme (class in skosprovider_sqlalchemy.models)

E

 	
 	expand() (skosprovider_sqlalchemy.providers.SQLAlchemyProvider method)

 	
 	expand_strategy (skosprovider_sqlalchemy.providers.SQLAlchemyProvider attribute)

F

 	
 	find() (skosprovider_sqlalchemy.providers.SQLAlchemyProvider method)

G

 	
 	get_all() (skosprovider_sqlalchemy.providers.SQLAlchemyProvider method)

 	get_by_id() (skosprovider_sqlalchemy.providers.SQLAlchemyProvider method)

 	get_by_uri() (skosprovider_sqlalchemy.providers.SQLAlchemyProvider method)

 	
 	get_children_display() (skosprovider_sqlalchemy.providers.SQLAlchemyProvider method)

 	get_top_concepts() (skosprovider_sqlalchemy.providers.SQLAlchemyProvider method)

 	get_top_display() (skosprovider_sqlalchemy.providers.SQLAlchemyProvider method)

I

 	
 	import_provider() (in module skosprovider_sqlalchemy.utils)

 	init_all() (skosprovider_sqlalchemy.models.Initialiser method)

 	init_labeltype() (skosprovider_sqlalchemy.models.Initialiser method)

 	
 	init_languages() (skosprovider_sqlalchemy.models.Initialiser method)

 	init_matchtypes() (skosprovider_sqlalchemy.models.Initialiser method)

 	init_notetype() (skosprovider_sqlalchemy.models.Initialiser method)

 	Initialiser (class in skosprovider_sqlalchemy.models)

L

 	
 	Label (class in skosprovider_sqlalchemy.models)

 	label() (in module skosprovider_sqlalchemy.models)

 	
 	LabelType (class in skosprovider_sqlalchemy.models)

 	Language (class in skosprovider_sqlalchemy.models)

M

 	
 	Match (class in skosprovider_sqlalchemy.models)

 	
 	MatchType (class in skosprovider_sqlalchemy.models)

N

 	
 	Note (class in skosprovider_sqlalchemy.models)

 	
 	NoteType (class in skosprovider_sqlalchemy.models)

R

 	
 	related_concepts_append_listener() (in module skosprovider_sqlalchemy.models)

 	
 	related_concepts_remove_listener() (in module skosprovider_sqlalchemy.models)

S

 	
 	skosprovider_sqlalchemy.models (module)

 	skosprovider_sqlalchemy.providers (module)

 	
 	skosprovider_sqlalchemy.utils (module)

 	Source (class in skosprovider_sqlalchemy.models)

 	SQLAlchemyProvider (class in skosprovider_sqlalchemy.providers)

T

 	
 	Thing (class in skosprovider_sqlalchemy.models)

V

 	
 	visit() (skosprovider_sqlalchemy.utils.VisitationCalculator method)

 	
 	Visitation (class in skosprovider_sqlalchemy.models)

 	VisitationCalculator (class in skosprovider_sqlalchemy.utils)

 nav.xhtml

 Table of Contents

 		
 SkosProvider_SQLAlchemy

 		
 Setup

 		
 Installation

 		
 Creating a database

 		
 Upgrading from skosprovider_sqlalchemy 1.x to 2.x

 		
 API Documentation

 		
 Providers module

 		
 Models module

 		
 Utils module

 		
 History

 		
 2.0.1 (2023-03-20)

 		
 2.0.0 (2023-01-19)

 		
 1.0.0 (2021-12-21)

 		
 0.6.0 (2020-07-29)

 		
 0.5.2 (2018-11-13)

 		
 0.5.1 (2016-10-05)

 		
 0.5.0 (2016-08-11)

 		
 0.4.2 (2015-03-02)

 		
 0.4.1 (2014-12-18)

 		
 0.4.0 (2014-10-28)

 		
 0.3.0 (2014-10-17)

 		
 0.2.1 (2014-08-25)

 		
 0.2.0 (2014-05-14)

 		
 0.1.2 (2013-12-06)

 		
 0.1.1 (2013-11-28)

 		
 0.1.0

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

